Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Travel Med Infect Dis ; 59: 102698, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556220

RESUMO

BACKGROUND: Mpox virus (MPXV) has recently spread outside of sub-Saharan Africa. This large multicentre study was conducted in Lombardy, the most densely populated Italian region accounting for more than 40% of Italian cases. The present study aims to: i) evaluate the presence and the shedding duration of MPXV DNA in different body compartments correlating the MPXV viability with the time to onset of symptoms; ii) provide evidence of MPXV persistence in different body compartment as a source of infection and iii) characterize the MPXV evolution by whole genome sequencing (WGS) during the outbreak occurred in Italy. MATERIAL AND METHODS: The study included 353 patients with a laboratory-confirmed diagnosis of MPXV infection screened in several clinical specimens in the period May 24th - September 1st, 2022. Viral isolation was attempted from different biological matrices and complete genome sequencing was performed for 61 MPXV strains. RESULTS: MPXV DNA detection was more frequent in the skin (94.4%) with the longest median time of viral clearance (16 days). The actively-replicating virus in cell culture was obtained for 123/377 (32.6%) samples with a significant higher viral quantity on isolation positive samples (20 vs 31, p < 0.001). The phylogenetic analysis highlighted the high genetic identity of the MPXV strains collected, both globally and within the Lombardy region. CONCLUSION: Skin lesion is gold standard material and the high viral load and the actively-replicating virus observed in genital sites confirms that sexual contact plays a key role in the viral transmission.


Assuntos
DNA Viral , Surtos de Doenças , Eliminação de Partículas Virais , Humanos , Itália/epidemiologia , DNA Viral/genética , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Filogenia , Adulto Jovem , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/virologia , Adolescente , Sequenciamento Completo do Genoma , Idoso , Criança
2.
Proc Natl Acad Sci U S A ; 121(3): e2315354120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194459

RESUMO

The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A Secretora , Animais , Camundongos , Humanos , Imunoglobulina G , Imunoglobulina A , Administração Intranasal , Camundongos Transgênicos
3.
ACS Omega ; 8(45): 42264-42274, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024754

RESUMO

Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.

4.
Glob Chall ; 7(10): 2300088, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37829677

RESUMO

Neutralizing monoclonal antibodies have achieved great efficacy and safety for the treatment of numerous infectious diseases. However, their neutralization potency is often rapidly lost when the target antigen mutates. Instead of isolating new antibodies each time a pathogen variant arises, it can be attractive to adapt existing antibodies, making them active against the new variant. Potential benefits of this approach include reduced development time, cost, and regulatory burden. Here a methodology is described to rapidly evolve neutralizing antibodies of proven activity, improving their function against new pathogen variants without losing efficacy against previous ones. The reported procedure is based on structure-guided affinity maturation using combinatorial mutagenesis and phage display technology. Its use against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is demonstrated, but it is suitable for any other pathogen. As proof of concept, the method is applied to CoV-X2, a human bispecific antibody that binds with high affinity to the early SARS-CoV-2 variants but lost neutralization potency against Delta. Antibodies emerging from the affinity maturation selection exhibit significantly improved neutralization potency against Delta and no loss of efficacy against the other viral sequences tested. These results illustrate the potential application of structure-guided affinity maturation in facilitating the rapid adaptation of neutralizing antibodies to pathogen variants.

5.
PLoS One ; 18(9): e0291120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656746

RESUMO

Detection of subgenomic (sg) SARS-CoV-2 RNAs are frequently used as a correlate of viral infectiousness, but few data about correlation between sg load and viable virus are available. Here, we defined concordance between culture isolation and E and N sgRNA quantification by ddPCR assays in 51 nasopharyngeal swabs collected from SARS-CoV-2 positive hospitalized patients. Among the 51 samples, 14 were SARS-CoV-2 culture-positive and 37 were negative. According to culture results, the sensitivity and specificity of E and N sgRNA assays were 100% and 100%, and 84% and 86%, respectively. ROC analysis showed that the best E and N cut-offs to predict positive culture isolation were 32 and 161 copies/mL respectively, with an AUC (95% CI) of 0.96 (0.91-1.00) and 0.96 (0.92-1.00), and a diagnostic accuracy of 88% and 92%, respectively. Even if no significant correlations were observed between sgRNA amount and clinical presentation, a higher number of moderate/severe cases and lower number of days from symptoms onset characterized patients with sgRNA equal to or higher than sgRNA cut-offs. Overall, this study suggests that SARS-CoV-2 sgRNA quantification could be helpful to estimate the replicative activity of SARS-CoV-2 and can represent a valid surrogate marker to efficiently recognize patients with active infection. The inclusion of this assay in available SARS-CoV-2 diagnostics procedure might help in optimizing fragile patients monitoring and management.


Assuntos
COVID-19 , Viroses , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , RNA Subgenômico , Biomarcadores , RNA
6.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347462

RESUMO

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Assuntos
Interferon Tipo I , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Chlorocebus aethiops , Humanos , Células Vero , Autoanticorpos , Anticorpos Antivirais , Interferon-alfa
7.
J Med Virol ; 95(5): e28778, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212258

RESUMO

Monkeypox virus (MPXV) is a zoonotic disease endemic in the rainforest countries of Central and West Africa. Understanding the immune response in zoonosis is fundamental to prevent and contrast viral spreading. MPXV is a close relative of Variola (smallpox) virus and vaccination with vaccinia virus gives approximatively 85% of protection against MPXV. With the emergence of the recent MPXV outbreak, JYNNEOS vaccine has been proposed to individuals at high-risk of exposure. Comparative data on MPXV immune response in vaccinated or infected subjects are still limited. Here we set-up an immunofluorescence method for the evaluation of humoral response elicited by natural infection and healthy vaccinated subjects, including historically smallpox-vaccinated individuals and newly vaccinated subjects. Neutralization assay was also included, and in vaccinated subjects, cell-mediated response was evaluated. We observed that the natural infection produces a strong immune response that can control the disease. In naïve subjects, a second dose boosts the serological response to levels similar to those of the MPXV patients. Last, smallpox-vaccinated controls retain a degree of protection, even after years from vaccination, most visible in the t-cellular response.


Assuntos
Mpox , Varíola , Humanos , Monkeypox virus , Varíola/prevenção & controle , Mpox/epidemiologia , Mpox/prevenção & controle , Vaccinia virus , Imunidade
8.
iScience ; 26(4): 106562, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37063467

RESUMO

This study reports the isolation and characterization of a human monoclonal antibody (mAb) called 19n01. This mAb was isolated by using single-cell RNAseq of B cells from donors infected with the ancestral strain. This mAb possesses a potent and broad capacity to bind and neutralize all previously circulating variants of concern (VOCs), including Omicron sublineages BA.1, BA.2, and BA.4/5. The pseudovirus neutralization assay revealed robust neutralization capacity against the G614 strain, BA.1, BA.2, and BA.4/5, with inhibitory concentration (IC50) values ranging from 0.0035 to 0.0164 µg/mL. The microneutralization assay using the G614 strain and VOCs demonstrated IC50 values of 0.013-0.267 µg/mL. Biophysical and structural analysis showed that 19n01 cross-competes with ACE2 binding to the receptor-binding domain (RBD) and the kinetic parameters confirmed the high affinity against the Omicron sublineages (KD of 61 and 30 nM for BA.2 and BA.4/5, respectively). These results suggest that the 19n01 is a remarkably potent and broadly reactive mAb.

9.
J Infect Public Health ; 16(5): 736-740, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958168

RESUMO

INTRODUCTION: Although the potential role of inanimate surfaces in SARS-CoV-2 transmission has yet to be adequately assessed, it is still routine practice to apply deep and expensive environmental disinfection protocols. The aim of this study was to verify the presence of viable virus on different surfaces exposed to droplets released by coughing in SARS-CoV-2 RNA positive patients. METHODS: Patients admitted to hospital with a positive SARS-CoV-2 real-time (RT)-PCR swab were asked to cough on steel, cardboard, plastic and their hands. Surfaces were tested at baseline (T0) and at different timepoints thereafter using swabs dipped in medium, and quickly seeded on VERO E6 cells that were checked every other day for cytopathic effect (CPE). Laboratory-propagated SARS-CoV-2 strains were examined at the same time points and on identical materials. RESULTS: Ten RNA-positive patients were enrolled into the study. The median cycle threshold value was 20.7 (range 13-28.3). Nasopharyngeal swabs from 3 of the patients yielded viable virus 2-10 days post-inoculation. However, in none of the patients was it possible to isolate viable SARS-CoV-2 from sputum under identical experimental conditions. A CPE was instead already visible using laboratory-propagated SARS-CoV-2 strains at 20', 60', 180' while an effect at 24 h required a 6-day incubation. CONCLUSION: The evidence emerging from this real-life study suggests that droplets delivered by SARS-CoV-2 infected patients on common inanimate surfaces did not contain viable virus. In contrast, and in line with several laboratory-based experiments, in vitro adapted viruses could survive and grow on the same fomites.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , RNA Viral/genética , Fômites , Hospitais
10.
Eur J Med Chem ; 245(Pt 2): 114916, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36399878

RESUMO

Tuberculosis is one of the deadliest infectious diseases in the world, and the increased number of multidrug-resistant and extensively drug-resistant strains is a reason for concern. We have previously reported a series of substituted 5-(2-aminothiazol-4-yl)isoxazole-3-carboxamides with growth inhibitory activity against Mycobacterium tuberculosis strains and low propensity to be substrate of efflux pumps. Encouraged by these preliminary results, we have undertaken a medicinal chemistry campaign to determine the metabolic fate of these compounds and to delineate a reliable body of Structure-Activity Relationships. Keeping intact the (thiazol-4-yl)isoxazole-3-carboxamide core, as it is deemed to be the pharmacophore of the molecule, we have extensively explored the structural modifications able to confer good activity and avoid rapid clearance. Also, a small set of analogues based on isostere manipulation of the 2-aminothiazole were prepared and tested, with the aim to disclose novel antitubercular chemotypes. These studies, combined, were instrumental in designing improved compounds such as 42g and 42l, escaping metabolic degradation by human liver microsomes and, at the same time, maintaining good antitubercular activity against both drug-susceptible and drug-resistant strains.


Assuntos
Isoxazóis , Mycobacterium tuberculosis , Humanos , Isoxazóis/farmacologia , Antituberculosos/farmacologia , Relação Estrutura-Atividade , Química Farmacêutica
11.
Rheumatology (Oxford) ; 62(2): 726-734, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736379

RESUMO

OBJECTIVES: To analyse humoral and cellular immune response to mRNA COVID-19 vaccines in patients with GCA. METHODS: Consecutive patients with a diagnosis of GCA receiving two doses of BNT162b2 vaccine were assessed at baseline and 3 weeks from the second vaccine dose. Healthy subjects (n = 51) were included as controls (HC). Humoral response was assessed with Spike-specific IgG antibody response (S-IgG) and neutralizing antibodies (NtAb). Specific T cell response was assessed by enzyme linked immunosorbent spot (ELISpot). RESULTS: Of 56 included patients with GCA, 44 were eligible after exclusion of previous evidence of COVID-19 and incomplete follow-up. A significant proportion of patients with GCA (91%) demonstrated antibody (S-IgG) response, but this was significantly lower than HCs (100%); P < 0.0001. Neutralizing activity was not detected in 16% of patients with GCA. Antibody titres (S-IgG and NtAb) were significantly lower compared with HCs. Humoral response (S-IgG and NtAb) was significantly hampered by treatment with MTX. Cellular response was lacking in 30% of patients with GCA (vs 0% in HCs; P < 0.0001). Cellular response was significantly influenced by the levels of baseline peripheral T-lymphocytes and by glucocorticoid treatment. Treatment with tocilizumab did not affect any level of the immune response elicited by vaccination. CONCLUSIONS: Although patients with GCA apparently achieve a robust antibody seroconversion, there is a significant impairment of the neutralizing activity. MTX significantly reduced all levels of the humoral response. Up to one-third of patients do not develop a cellular immune protection in response to COVID-19 vaccination.


Assuntos
COVID-19 , Vasculite , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Vacinação , Imunidade Celular , Imunidade Humoral
12.
Vaccines (Basel) ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36366318

RESUMO

We reported the long-term kinetics of immune response after vaccination and evaluated the immunogenicity after a third dose of mRNA vaccine in 86 healthcare workers. Humoral response was analyzed by measuring anti-spike IgG and SARS-CoV-2 NTAbs titer; cell-mediated response was measured as frequency of IFN-γ producing T-cells and cell proliferation. Memory B cells secreting SARS-CoV-2 RBD-IgG were measured by B-spot assay. At three weeks after the third dose (T4), the frequency of subjects showing NT-Abs titer at the upper detection limit (≥640) was significantly higher than that observed at three weeks after the second dose (26/77; 33.7% vs. 9/77; 11.6%; p = 0.0018). Additionally, at T4, all the subjects reached positive levels of T-cell mediated response (median 110 SFU/106 PBMC, IQR 73-231). While the number of IFNγ-producing T-cells decreased between second and third dose administration, the T-cell proliferative response did not decrease but was sustained during the follow-up. Among T-cell subsets, a higher proliferative response was observed in CD4+ than in CD8+ population. Moreover, even if a decline in antibody response was observed between the second and third dose, a sustained persistence of memory B cells was observed. Subsequently, the third dose did not affect the frequency of memory B cells, while it restored or increased the peak antibody levels detected after the second dose.

13.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891421

RESUMO

COVID-19 convalescent plasma (CCP) has been the only specific anti-viral therapy against SARS-CoV-2 available for more than one year. Following the negative results from most randomized controlled trials on its efficacy in COVID-19 hospitalized patients and the availability of anti-spike monoclonal antibodies (mAbs), the use of CCP has subsequently rapidly faded. However, the continuous appearance of new variants of concern (VOCs), most of which escape mAbs and vaccine-elicited neutralizing antibodies (nAbs), has renewed the interest towards CCP, at least in seronegative immunocompetent patients, and in immunocompromised patients not able to mount a protective immune response. We report here the experience of a single Italian hospital in collecting and transfusing CCP in immunocompromised patients hospitalized for severe COVID-19 between October 2021 and March 2022. During this 6-month period, we collected CCP from 32 vaccinated and convalescent regular blood donors, and infused high nAb-titer CCP units (titered against the specific VOC affecting the recipient) to 21 hospitalized patients with severe COVID-19, all of them seronegative at the time of CCP transfusion. Patients' median age was 66 years (IQR 50-74 years) and approximately half of them (47.6%, 10/21) were immunocompromised. Two patients were rescued after previous failure of mAbs. No adverse reactions following CCP transfusion were recorded. A 28-day mortality rate of 14.3 percent (3/21) was reported, with age, advanced disease stage and late CCP transfusion associated with a worse outcome. This real-life experience also supports the use of CCP in seronegative hospitalized COVID-19 patients during the Delta and Omicron waves.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Humanos , Imunização Passiva/métodos , Soroterapia para COVID-19
14.
Microorganisms ; 10(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744768

RESUMO

We compared the development and persistence of antibody and T-cell responses elicited by the mRNA BNT162b2 vaccine or SARS-CoV-2 infection. We analysed 37 post-COVID-19 patients (15 with pneumonia and 22 with mild symptoms) and 20 vaccinated subjects. Anti-Spike IgG and neutralising antibodies were higher in vaccinated subjects and in patients with pneumonia than in patients with mild COVID-19, and persisted at higher levels in patients with pneumonia while declining in vaccinated subjects. However, the booster dose restored the initial antibody levels. The proliferative CD4+ T-cell response was similar in vaccinated subjects and patients with pneumonia, but was lower in mild COVID-19 patients and persisted in both vaccinated subjects and post-COVID patients. Instead, the proliferative CD8+ T-cell response was lower in vaccinated subjects than in patients with pneumonia, decreased six months after vaccination, and was not restored after the booster dose. The cytokine profile was mainly TH1 in both vaccinated subjects and post-COVID-19 patients. The mRNA BNT162b2 vaccine elicited higher levels of antibody and CD4+ T-cell responses than those observed in mild COVID-19 patients. While the antibody response declined after six months and required a booster dose to be restored at the initial levels, the proliferative CD4+ T-cell response persisted over time.

15.
Vaccines (Basel) ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746528

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has severely impacted on public health, mainly on immunosuppressed patients, including solid organ transplant recipients. Vaccination represents a valuable tool for the prevention of severe SARS-CoV-2 infection, and the immunogenicity of mRNA vaccines has been evaluated in transplanted patients. In this study, we investigated the role of a third dose of the BNT162b2 vaccine in a cohort of kidney transplant recipients, analyzing both humoral and cell-mediated responses. We observed an increased immune response after the third dose of the vaccine, especially in terms of Spike-specific T cell response. The level of seroconversion remained lower than 50% even after the administration of the third dose. Mycophenolate treatment, steroid administration and age seemed to be associated with a poor immune response. In our cohort, 11/45 patients experienced a SARS-CoV-2 infection after the third vaccine dose. HLA antibodies appearance was recorded in 7 out 45 (15.5%) patients, but none of the patients developed acute renal rejection. Further studies for the evaluation of long-term immune responses are still ongoing, and the impact of a fourth dose of the vaccine will be evaluated.

16.
Nat Commun ; 13(1): 2670, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562366

RESUMO

The recent emergence of the Omicron variant has raised concerns on vaccine efficacy and the urgent need to study more efficient vaccination strategies. Here we observed that an mRNA vaccine booster in individuals vaccinated with two doses of inactivated vaccine significantly increased the plasma level of specific antibodies that bind to the receptor-binding domain (RBD) or the spike (S) ectodomain (S1 + S2) of both the G614 and the Omicron variants, compared to two doses of homologous inactivated vaccine. The level of RBD- and S-specific IgG antibodies and virus neutralization titers against variants of concern in the heterologous vaccination group were similar to that in individuals receiving three doses of homologous mRNA-vaccine or a boost of mRNA vaccine after infection, but markedly higher than that in individuals receiving three doses of a homologous inactivated vaccine. This heterologous vaccination regime furthermore significantly enhanced the RBD-specific memory B cell response and S1-specific T cell response, compared to two or three doses of homologous inactivated vaccine. Our study demonstrates that mRNA vaccine booster in individuals vaccinated with inactivated vaccines can be highly beneficial, as it markedly increases the humoral and cellular immune responses against the virus, including the Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , RNA Mensageiro/genética , SARS-CoV-2/genética , Vacinação , Vacinas de Produtos Inativados , Vacinas Sintéticas , Vacinas de mRNA
17.
Vaccines (Basel) ; 10(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35632457

RESUMO

SARS-CoV-2 still represents a global health burden, causing more than six million deaths worldwide. Moreover, the emergence of new variants has posed new issues in terms of vaccine efficacy and immunogenicity. In this study, we aimed to evaluate the neutralizing antibody response against SARS-CoV-2 variants in different cohorts of vaccinated and unvaccinated subjects. Four-fold diluted sera from SARS-CoV-2 naïve and recovered subjects vaccinated with two or three doses of the BNT162b2 vaccine were challenged against 14 SARS-CoV-2 variants, and the SARS-CoV-2 neutralizing antibody titer was measured. Results were compared with those obtained from unvaccinated COVID-19 recovered patients. Overall, a better SARS-CoV-2 NT Abs response was observed in recovered vaccinated subjects after three doses of the vaccine when compared to unvaccinated patients and vaccinated subjects with only two doses. Additionally, the lowest level of response was observed against the Omicron variant. In conclusion, third doses of BNT162b2 vaccine seems to elicit a sustained response against the large majority of variants.

18.
Biochem Biophys Res Commun ; 607: 49-53, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366543

RESUMO

Tuberculosis (TB) is one of the leading causes of death worldwide, due to a single pathogen, Mycobacterium tuberculosis. To eradicate TB, management of drug-resistant strains is fundamental, therefore, the identification and characterization of drug targets is pivotal. In this work we aim at describing the relationships with the well-known drug target DprE1 and DprE2, working in association for the biosynthesis of the arabinogalactan precursor, essential component of mycobacterial cell wall. We demonstrated that the enzymes behave as a stable heterodimeric complex, once co-expressed into the same system. This complex showed improved catalytic properties, compared to the singularly expressed enzymes, demonstrating that co-expression is fundamental to achieve the proper folding of the active sites. Our results represent an important step forward in deciphering the functional properties of these enzymes, and lay the foundations for structural studies, useful for development of more specific inhibitors helpful to contrast the spreading of drug-resistant strains.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/química , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Humanos , Racemases e Epimerases , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
19.
Transfusion ; 62(6): 1171-1176, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426131

RESUMO

BACKGROUND: Novel SARS-CoV-2 variants of concern (VOC) Delta and Omicron are able to escape some monoclonal antibody therapies, making again COVID-19 convalescent plasma (CCP) a potential frontline treatment. STUDY DESIGN/METHODS: In this study, we investigated the kinetics of anti-SARS-CoV-2 neutralizing antibodies (nAbs) against VOCs Delta and Omicron in vaccine breakthrough infected plasma donors. Serum samples from 19 donors were collected at the time of plasma donation and tested for anti-SARS-CoV-2 nAbs (using live authentic VOC viral neutralization test) and IgG (Liaison® SARS-CoV-2 S1/S2 and Liaison® SARS-CoV-2 TrimericS IgG assays, DiaSorin). Measures were correlated with different variables, including the time between last vaccine dose and CCP donation, and time between SARS-COV-2 infection and CCP donation. RESULTS: nAb titers against VOC Delta and Omicron were directly related to the time interval since last vaccine dose to CCP donation, but inversely related to time since COVID19 breakthrough infection. DISCUSSION: SARS-CoV-2 breakthrough infection in vaccinated in donors boosts nAb titers against VOCs Delta and Omicron, but such titers decay shortly after infection. Therefore, CCP must be collected early after vaccine breakthrough infection.


Assuntos
COVID-19 , Vacinas Virais , Anticorpos Neutralizantes , Anticorpos Antivirais , Doadores de Sangue , COVID-19/prevenção & controle , COVID-19/terapia , Humanos , Imunização Passiva , Imunoglobulina G , Testes de Neutralização , SARS-CoV-2 , Soroterapia para COVID-19
20.
BMC Med ; 20(1): 102, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236358

RESUMO

BACKGROUND: The COVID-19 pandemic is caused by the betacoronavirus SARS-CoV-2. In November 2021, the Omicron variant was discovered and immediately classified as a variant of concern (VOC), since it shows substantially more mutations in the spike protein than any previous variant, especially in the receptor-binding domain (RBD). We analyzed the binding of the Omicron RBD to the human angiotensin-converting enzyme-2 receptor (ACE2) and the ability of human sera from COVID-19 patients or vaccinees in comparison to Wuhan, Beta, or Delta RBD variants. METHODS: All RBDs were produced in insect cells. RBD binding to ACE2 was analyzed by ELISA and microscale thermophoresis (MST). Similarly, sera from 27 COVID-19 patients, 81 vaccinated individuals, and 34 booster recipients were titrated by ELISA on RBDs from the original Wuhan strain, Beta, Delta, and Omicron VOCs. In addition, the neutralization efficacy of authentic SARS-CoV-2 wild type (D614G), Delta, and Omicron by sera from 2× or 3× BNT162b2-vaccinated persons was analyzed. RESULTS: Surprisingly, the Omicron RBD showed a somewhat weaker binding to ACE2 compared to Beta and Delta, arguing that improved ACE2 binding is not a likely driver of Omicron evolution. Serum antibody titers were significantly lower against Omicron RBD compared to the original Wuhan strain. A 2.6× reduction in Omicron RBD binding was observed for serum of 2× BNT162b2-vaccinated persons. Neutralization of Omicron SARS-CoV-2 was completely diminished in our setup. CONCLUSION: These results indicate an immune escape focused on neutralizing antibodies. Nevertheless, a boost vaccination increased the level of anti-RBD antibodies against Omicron, and neutralization of authentic Omicron SARS-CoV-2 was at least partially restored. This study adds evidence that current vaccination protocols may be less efficient against the Omicron variant.


Assuntos
COVID-19 , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA